الخميس، 15 مارس 2012

Relativity

Relativity : Relativity Special relativity What is special relativity about? The evolution of concepts of space and time through history Newtonian mechanics and Maxwell’s equations Einstein’s space-time and consequences of Einstein’s theory Special relativity “paradoxes”General relativity What is general relativity about? Conclusions and further reading suggestions Outline
What is relativity about? : What is relativity about? There are actually two kinds of relativity theories: special and general, both created by Einstein. Today, we will concentrate almost entirely on special relativity. Why do we need special relativity? Well, here at Fermilab, we accelerate particles to very nearly the speed of light, and the way things move at such high speeds is very different from what we are used to in everyday life. Special relativity allows us to describe what happens at very high energies Fundamentally, both special and general theories of relativity deal with the concepts of space and time It is curious to see how our understanding of space and time evolved through history…
Aristotle's physics : Aristotle's physics Aristotle's views on space, time, and motion were very intuitive; they are pretty much how people "feel" about these things. Here are Aristotle's views on space and time: Every sensible body is by its nature somewhere. (Physics,Book 3, 205a:10) Time is the numeration of continuous movement. (Physics, Book 4, 223b:1) Aristotle 384-322 B.C.
Aristotle's space and time : Aristotle's space and time There exists a Prime Mover, a privileged being in the state of Absolute Rest The position of everything else is measured with three numbers (x, y, z) with respect to the Prime Mover, who sits at (0,0,0). The time is measured by looking at the Prime Mover's clock x y z (x,y,z) This point of view prevailed for almost 2,000 years
Galileo's challenge : Galileo's challenge Galileo argued that there is no such thing as "Absolute Rest". In his view: The mechanical laws of physics are the same for every observer moving with a constant speed along a straight line (this is called "inertial observer" for short). Galileo Galilei 1564 -1642
Galileo's space and time : Galileo's space and time Every inertial observer could declare themselves "the Prime Mover", and measure the position of everything with respect to their own set of (x, y, z) The time is still measured by looking at the Prime Mover's clock! x y z (x,y,z) x' y' (x',y',z') z' v
Galileo's transformations : Galileo's transformations We have two frames of reference, K and K', and K' is moving along axis y with some constant speed v. Something happened at point A. According to Galileo, there is no one special reference frame -- if we know where A happened in one frame, we are done! That's because: K z x K' v x' y' z' y vt y' y A Galileo transformations: know what happened in one frame, can tell what happened in another
Newton's laws of mechanics : Newton's laws of mechanics Newton's laws of mechanics are in agreement with Galileo's relativity A body, not acted upon by any force, stays at rest or remains in uniform motion, whichever it was doing to begin with To get an object to change its velocity, we need a force Sir Isaac Newton 1642-1727 Force = mass x acceleration (acceleration = change in velocity)
Newton’s laws are the same in all inertial frames : Newton’s laws are the same in all inertial frames We know how positions of an object transform when we go from one inertial frame of reference to another What about velocities? What about accelerations? velocity of an object in K is equal to its velocity in K', plus the velocity of K’ with respect to K = 0 as v = const Accelerations are the same in both K and K’ frames! So Newtonian forces will be the same in both frames
The clouds start to gather… : The clouds start to gather… For more than two centuries after its inception the Newtonian view of the world ruled supreme However, at the end of the 19th century problems started to appear The problematic issue can be reduced to these questions: What is light? How does it propagate?
Here comes Maxwell : Here comes Maxwell Maxwell brought together the knowledge of electricity and magnetism known in his day in a set of four elegant equations known as Maxwell's equations In the process, he introduced a new concept: electromagnetic waves, and found that they traveled at the speed of light Light is an electromagnetic phenomenon! James C. Maxwell 1831-1879
Electromagnetic waves : Electromagnetic waves electric field magnetic field
Waves in general : Waves in general The waves we are all familiar with require something to propagate in What about light? The most natural assumption would be that it requires a medium, too! Sound waves are compressions of air (water, etc.) Spring compressions in a slinky
Aether : Aether This mysterious medium for light was called aether What would its properties be? We see light from distant starts, so aether must permeate the whole universe Must be very tenuous, or else the friction would have stopped the Earth long ago Michelson and Morley attempted to detect aether by measuring the speed of light in two different directions: “upwind” and “downwind” with respect to aether. Aether would be like a ghostly wind blowing through the Universe!
Michelson-Morley experiment : Michelson-Morley experiment Michelson and Morley used a very sensitive interferometer to detect the difference in the speed of light depending on the direction in which it travels. NO such dependence was found! So NO aether? Or an error in the measurements?
Another problem : Another problem Maxwell's equations introduce the speed of light, c But they don't say with respect to what this velocity is to be measured! So what can we conclude? That light must move at speed c in all reference frames? But this contradicts Newtonian mechanics!
Houston, we've got a problem… : Houston, we've got a problem… If electromagnetism is governed by the same rules as Newtonian mechanics, the “addition of velocities” rule should also apply. So if USS Enterprise is moving towards the Borg cube with the speed of light, c, and fires a photon torpedo (moving with speed c), the Borg should see the torpedo flying towards them with the speed of 2c? c c But what if uy’ = c and v = c?
Maybe that’s fine? : Maybe that’s fine? Suppose that addition of velocities does work for light, too. Then imagine the following experiment: If the car is moving with speed v, and light from the rear of the car is moving with speed c, we should measure speed of light = v - c. Then if we know c (and we do from other experiments), we should derive v. Numerous experiments tried to measure the speed of Earth based on this general idea -- with NO results whatsoever!!! Speed of light seemed always to be the same! v I think the speed of light is v-c!
What do we know so far? : What do we know so far? Newton's mechanics based on Galileo's relativity All laws of mechanics are the same in different inertial reference frames (frames moving with a constant speed along a straight line relative to one another) Maxwell's electrodynamics There is a fundamental constant of nature, the speed of light (c) that is always the same The fact that there is such a constant is inconsistent with Newton’s mechanics!
Einstein's choices : Einstein's choices Einstein was faced with the following choices: Maxwell's equations are wrong. The right ones would be consistent with Galileo's relativity That's unlikely. Maxwell's theory has been so well confirmed by numerous experiments! Galileo's relativity was wrong when applied to electromagnetic phenomena. There was a special reference frame for light. This was more likely, but it assumed light was like any other waves and required a medium for propagation. That medium was not found! There is a relativity principle for both mechanical and electromagnetic phenomena, but it's not Galileo's relativity.
Einstein's relativity postulates : Einstein's relativity postulates It required the genius and the courage of Einstein to accept the third alternative. His special relativity is based on two postulates: All laws of nature are the same in all inertial frames This is really Galileo's relativity The speed of light is independent of the motion of its source This simple statement requires a truly radical re-thinking about the nature of space and time! Albert Einstein 1879-1955
What's so radical about it? : What's so radical about it? It was Galileo who finished off the concept of Absolute Space. Einstein added that there is no Absolute Time, either. Simultaneity is relative! From the point of view of Jack, lightning struck both train cars at the same time From the point of view of John, lightning struck first car A and then car B
Space-time : Space-time There are no such things as "space" and "time", there is only four-dimensional space-time! How does one visualize such a thing? time space It's hard, so people usually imagine a three-dimensional "space" with one coordinate being the time coordinate this is called a space-time diagram world line event
Some consequences: time dilation : Some consequences: time dilation The time dilation formula can be shown to result from the fundamental postulates by considering a light clock. Ticks every time a light pulse is reflected back to the lower mirror tock! Stationary clock: Moving clock:
What does this mean? : Time in a moving system slows down comparing to a stationary system! E.g., charged pions have a lifetime of t = 2.56 x 10-8 s, so most of them would decay after traveling ct = 8 m. But we have no trouble transporting them by hundreds of meters! What does this mean? No time dilation 8 m 300 m With time dilation p+ p+
Some consequences: space contraction : Some consequences: space contraction Consider our light clock again, only in this case we consider the clock on its side such that the motion of the clock pulse is parallel to the clock's velocity Stationary clock: Moving clock:
What does this mean? : What does this mean? An observer moving along an object will find it shorter than it would be if the observer was standing still! So a space ship moving with 9/10 the speed of light along a lattice will find that the lattice is shorter than it was when the ship was at rest! L L'
More consequences : addition of velocities : Knowing now time and space behave, we can now derive how velocities transform when we go from one inertial system to another: It is only different from our familiar law of addition of velocities by a factor of (1 + uy' v/c2) in the denominator, but what a difference that makes! If v = c and uy' = c, then uy = 2c / (1+c2/c2) = c Speed of light really is the same in all frames! More consequences : addition of velocities
Lorentz transformations : Lorentz transformations These are Lorentz transformations They show how space and time are related for two different inertial observers in special relativity They are reduced to Galilean transformations when v << c Maxwell's equations are invariant under these transformations They are really a rotation in hyperbolic space formed by space and time coordinates!
A comment on geometry… : A comment on geometry… It is hard for us to think of going from one inertial system to another as a hyperbolic rotation. Partly this is because we are not used to thinking in terms of pseudo-Euclidean geometry. The familiar three-dimensional world around us is Euclidean, so it's very natural for us to imagine circles and spheres that do not change under rotations (x2 + y2 stays the same) But space-time is pseudo-Euclidean (minus instead of plus in what stays the same under rotations). Thus, Einstein's special theory of relativity is not about how "everything is relative" -- it's about the deepest connection between space and time, and the nature of space-time. Our understanding of space and time was further revolutionized in General Relativity…
Light cone : Light cone future x ct past A B C It is very convenient to represent space-time as a diagram with one axis being space and the other, time Because the speed of light is the upper limit for all velocities, the space time is divided into three regions by a cone called the "light cone": Past, Future, Elsewhere A path on this diagram is called a world line elsewhere world line light light
Can we really never travel faster than light? : Can we really never travel faster than light? The second postulate (that c is the same in all frames) also means that it is the highest possible speed. Otherwise, it would always be possible to come up with a reference frame where the speed of light would be higher than the "limit". Future x Past However, people have speculated that there may exist objects that are superluminous (always traveling faster than light). They are called tachyons. So far, they have not been seen. Faster-than-light travel means traveling backwards in time would be possible, which would violate causality. ct A B Hypothetical tachyon
Slide33 : Just say NO to time travel!
Traveling faster that light: a catch! : Traveling faster that light: a catch! Notice, however, that special relativity only precludes things from traveling faster than light in vacuum. In media (e.g., water or quartz) particles can travel faster than light can in that medium. This results in the so-called Cherenkov radiation, which is a very beautiful phenomenon widely used by physicists BaBar experiment's DIRC: Detector of InternallyReflected Cherenkov Radiation
What would you see if you were traveling close to the speed of light? : What would you see if you were traveling close to the speed of light? Imagine you are a proton traveling along Fermilab's Tevatron at a speed close to the speed of light. What would you see? There are several effects we need to take into account: Lorentz space contraction and dilation of time? Yes, but these effects will be "worked into" these two effects: Aberration of light Doppler shift What is aberration of light? What is Doppler shift? Let's find out!
Aberration of light : Aberration of light "Aberration" is just a fancy word for "addition of velocities" Aberration of light can be illustrated by aberration of rain At large velocities, we start to observe a similar phenomenon with light We just need to use the relativistic formula for addition of velocities The net effect is that light appears to converge on a point directly opposite the moving observer Train stationary Rain falling at 60 km/hour Train is moving at 60 km/hour Rain appears to be falling at an angle u'
Doppler effect : Doppler effect The Doppler effect is the familiar frequency shift we've all heard when a fire truck with its siren on passes by Similarly for light, in the direction of motion it appears to have a higher frequency (blueshifted). hear a higher frequency pitch when the truck approaches us hear a lower frequency pitch after the truck is past us
Relativistic aberration : Relativistic aberration Speed Limit c Here we are on a remote (desert) highway, where the speed limit is the speed of light Now we are moving at about 3/4 the speed of light. Note relativistic aberration!
Doppler shift and headlight effect : Doppler shift and headlight effect Now we turn on Doppler shifting, so that the desert and the sky are blueshifted ahead Now we turn on the "headlight" effect. Light is concentrated in the direction of motion, which seems brighter, while everything around appears dimmer. This is probably what a proton "sees" - just a bright spot ahead!
Some more cool examples… : Some more cool examples… star field at rest star field at 0.99c lattice at rest lattice at 0.99c
Special relativity paradoxes : Special relativity paradoxes There are numerous so-called "paradoxes" associated with special relativity. They are apparent contradictions, arising because of stubborn clinging to Galileo’s notions of unique time and space existing in a single moment in time. One of the most famous paradoxes is the twin paradox. Let us consider it in detail. It will also help us understand how to use space-time diagrams.
The twin "paradox" : The twin "paradox" On their 16th birthday, Jane gets her space ship driver's license and takes off from Earth at 0.8 c. Her twin brother Joe stays home. Jane is gone for 6 yrs her time, and Joe gets older by 6 / The "paradox" lies in the fact that from Jane's point of view, it was Joe who traveled. Shouldn’t he be younger, then? Jane has TWO inertial reference frames! Joe's frame Jane's frame 1-(0.8c/c)2 = 10 yrs x ct x ct
How does kinematics cope with relativity? : How does kinematics cope with relativity? It’s all very well to say that nothing can move faster than light, but Newtonian mechanics says that: So if we apply more and more force to an object, we can increase its speed more and more, and nothing tells us that it can’t move faster than light! This means that Newton’s second law must be modified in relativity. It becomes: Mass m is no longer constant!
Mass is not preserved anymore! : Mass is not preserved anymore! It can be shown from first principles (conservation of energy and momentum) and relativity postulates that mass becomes dependent on velocity at large speeds: If velocity v is very small comparing to c, then this formula becomes Such considerations led Einstein to say that mass of an object is equal to the total energy content divided by c2 m0 = rest mass kinetic energy faster means heavier!
The world’s most famous equation : The world’s most famous equation The equivalence of energy and mass has been confirmed by numerous experiments -- in fact, we at Fermilab test it every day! m0 m0 An electron and an anti-electron (positron) of mass m0 collide and annihilate, and two photons, each with energy = m0c2, come out!
Fermilab’s accelerators : Fermilab’s accelerators
Relativity and anti-matter : Relativity and anti-matter Given the relativistic equations for energy, mass, and momentum, we can obtain the following relation: Note that this means that E has two solutions, one with plus and one with minus sign. But what does negative energy means? How can anything have negative energy? It was this kind of problem that eventually lead people to the idea of anti-matter.
Experimental verifications of special relativity : Experimental verifications of special relativity Special relativity has been around for almost 100 years, and has brilliantly passed numerous experimental tests Special relativity is a "good" theory in the sense that it makes definite predictions that experimentalists are able to verify. Things like time dilation, length contraction, equivalence of mass and energy are no longer exotic words -- they are simple tools that particle physicists use in their calculations every day. Our Tevatron couldn't function a day if we didn't take into account special relativity! One should remember that special relativity was not something that Einstein just came up with out of the blue -- it was based on existing experimental results.
Is there anything left of Newton’s laws, then? : Is there anything left of Newton’s laws, then? Einstein himself felt obliged to apologize to Newton for replacing Newton’s system with his own. He wrote in his Autobiographical notes: However, special relativity does not make Newton’s mechanics obsolete. In our slow-moving (comparing to the speed of light) world, Newton’s mechanics is a perfect approximation to work with. Newton, forgive me. You found the only way which, in your age, was just about possible for a man of highest thought and creative power.
What is general relativity? : What is general relativity? General relativity is an extension of special relativity to the effects of gravity. Why was it necessary? The universal law of gravity says nothing about time If m1 moved, m2 would feel the change right away This implies the existence of some agent moving faster than light, which contradicts special relativity r m1 m2 F Newton's law of gravitation F
Gravity is special : Gravity is special We know there are 4 forces of nature: Gravity, Electromagnetism, Weak & Strong Nuclear forces Gravity is by far the weakest force, but it is also the most obvious Because it's universal Gravity acts the same on all forms of matter! WHY?
Universality of gravity : Universality of gravity Electromagnetism: Particles have different charges (+,-, or 0) Like charges repel, while opposites attract Gravitation: All particles react in exactly the same way!
Equivalence principle : Einstein realized that if everything feels the same acceleration, that is equivalent to nothing feeling any acceleration at all. Equivalence principle The equivalence principle: an observer inside a (small) enclosed laboratory cannot tell the difference between being at rest on Earth's surface or being accelerated in outer space.
What does this imply? : We can think of gravity as a feature of the background in which we live. This background is space and time: spacetime What we experience as gravity is actually the curvature of spacetime gravity is not an actor -- it's the stage itself! What does this imply? time space
Visualizing spacetime curvature : Visualizing spacetime curvature We can visualize spacetime curvature by tilting the light cones The warping of spacetime outside a gravitating body deflects trajectories toward the body We interpret that as the force of gravity
Black Holes : Black Holes If gravity is very strong, light cones tilt so much that all trajectories are forced into a common point (the singularity) That's a Black Hole Inside the event horizon, falling into the singularity is as inevitable as moving forward in time NGC 7052: evidence for a black hole?
Reconciling gravity with the other forces : Reconciling gravity with the other forces The (well-) known Universe consists of: "Matter": electrons, protons, neutrons, you "Forces": electromagnetism, weak & strong nuclear forces, gravity A crucial distinction: Matter and non-gravitational forces move through spacetime Gravity, however, IS spacetime!
Incompatibility with Quantum Mechanics : Incompatibility with Quantum Mechanics This distinction becomes a full-blown incompatibility when we take into account the theory underlying all of modern physics: You will have a lecture on QM on Apr. 20 Quantum mechanics in a nutshell: flipping a coin An ordinary ("classical") coin is always heads or tails, even if we don't know which A quantum-mechanical coin is described by a vector (an arrow) in the heads/tails plane. When we observe the coin, we only ever see heads or tails. The arrow tells us the probability of observing H or T. Quantum Mechanics H T H T
Possible solution in sight? : Possible solution in sight? A promising strategy in such a situation is to invent a completely new theory, which is both consistent with quantum mechanics and somehow includes gravity Leading candidate at the moment: string theory This seems to solve some technical, but not conceptual, problems. This brings up to the cutting edge of modern physics One day one of you may come up with a consistent theory of quantum gravity! Basic idea: if you look closely enough at any elementary particle, it's really a vibrating loop of "string"!
String theory pros and cons : String theory pros and cons Pros: An apparently consistent quantum theory of gravity A new understanding of what happens to things that fall into black holes -- not all information is lost forever Cons: Spacetime has to have more than four dimensions Maybe 10, maybe 11 -- the extra ones must be hidden somehow We don't understand the theory completely Hard to say anything with confidence Hard to make testable predictions (but people do try!)
Conclusions : Conclusions Special relativity revolutionized our understanding of space and time There is no "space" and "time" by themselves -- there is only four-dimensional space-time! It describes the motion of particles close to the speed of light No massive particles can ever exceed the speed of light Massless particles move at the speed of light Special relativity has been extremely well-tested by experiment. At everyday speeds, Newton's mechanics is a good approximation to work with. General relativity is an extension of special relativity to the effects of gravity Reconciling gravity with quantum mechanics is one of the major goals and dreams of modern theoretical physicists
For further reading : For further reading H. Bondi Relativity and Common Sense (Dover, 1962) R.P. Geroch General Relativity from A to B (University of Chicago Press, 1978) R. Penrose The Emperor’s New Mind (Oxford University Press, 1989) J.L. Synge Talking About Relativity (North-Holland, 1970) K.S. Thorne Black Holes and Time Wraps (W. W. Norton, New York, 1994) E. F. Taylor and J. A. Wheeler Spacetime Physics (W.H. Freeman, New York, 1966) -- this one is a little more technical!
The twin "paradox" : The twin "paradox" On their 16th birthday, Jane gets her space ship driver's license and takes off from Earth at 0.66c. Her twin brother Joe stays home. Jane is traveling towards a distant star, located 2.67 light years away from Earth in Joe's frame, and back. By how much will Joe and Jane have aged when they meet? Joe: 2.67 * 2 / (0.66c) = 8 yrs Jane: 2.67 * 1-(0.66c/c)2 / (0.66c) = 6 yrs The "paradox" lies in the fact that from Jane's point of view, it was Joe who traveled. Shouldn’t he be younger, then? Joe's signal Jane's signal Joe's worldline Jane's worldline v = 0.66 c Jane has TWO inertial reference frames!

الاثنين، 5 مارس 2012

فيزياء الجسيمات الاولية Introduction to the elementary particles physics " "

فيزياء الجسيمات الأولية ( أو كما تسمى بعض الأحيان الجسيمات دون النووية Sub nuclear particles ) .
وتسمى أيضًا فيزياء الطاقات العالية وسنعرف سبب هذه التسميات. في بداية نمو وتطور العلوم النووية كان يطلق على الدقائق التي تنبعث من المصادر المشعة بالدقائق الأساسية أو الأولية Fundamental particles وسبب هذه التسمية يرجع إلى أن العلماء أنذاك كانوا يعتقدون باستحالة تغير وتبدل تلك الدقائق تحت أي ظرف ، إلا أن التجارب اللاحقة برهنت عكس ذلك حيث بات من الميسور مشاهدة تحول بعض تلك الدقائق وأول ما يتبادر إلى أذهاننا تحول النيترون إلى بروتون والكترون .
وبالرغم من كل ذلك فإن بعض العلماء ما زال يفضل استعمال تعبير الدقائق الأساسية لأنها تؤلف الوحدات البنائية للنواة .
إن موضوع الجسيمات الأساسية يمثل محاولة الإنسان لمعرفة أكثر الأشياء أساسية تلك التي يتكون منها الكون ، أو يمكننا القول بأنه يمثل محاولة إجابة الجيل الحاضر عن سؤال طرحه الفلاسفة منذ 2500 عام على أقل تقدير ، نقول محاولة الإجابة لأن ما نعرفه الآن لا يمثل الجواب النهائي .

فما هي قصة اكتشاف هذه الجسيمات ؟!

اهتم الإنسان منذ القديم بالمكونات الأساسية للعالم المادي ، وكان لو سيبوس الميلي هو أول من قال بأن الذرة هي العنصر الأكثر أولية في الطبيعة . ثم جاء بعده ديموقريطس وثبت مفهوم الذرة غير المنقسمة والقاسية وغير المنضغطة .

وكانت هذه الذرات تختلف في شكلها وترتيبها وتخضع لحركة مستمرة وأبدية وشواشية وتؤلف هذه الذرات كل شيء بما فيها النفس . وأضاف لها أبيقور خاصة جديدة هي نوع من الثقالة ( الجاذبية ) وتكون حركتها وفقه غير منتظمة وموجهة نحو الأسفل إنما يمكن أن تكون منحرفة قليلاً .

وقد جوبهت هذه النظرية الذرية في العصور الوسطى بالموروث الأرسطي الذي يتألف العالم وفقه من أربعة صفات أولية ، هي الحرارة والبرودة والرطوبة والجفاف ،بالإضافة إلى مادة خاصة متواجدة في كل شيء هي الأثير .
ولم تطرح النظرية الذرية بقوة إلا في مطلع القرن العشرين مع اكتشاف الإلكترون ، وكان رذرفورد قد برهن من معطيات تجريبية ترتكز على قذف ورقة ذهبية بذرات الهيليوم الموجبة الشحنة ، أنه يوجد في مركز الذرة نواة موجبة الشحنة وصغيرة جدًا وسمى رذرفورد في عام 1920 م شحنة النواة الموجبة هذه بروتونًا .

وبعد ذلك باثنتي عشرة سنة اكتشف شاديوك جسيمًا متعادلاً كهربائيًا في قلب الذرة وسماه النيترون . وفي نفس السنة أيضًا تم اكتشاف البوزيترون عالم 1905 م اقترح آينشتاين في الوقت الذي كان يطرح منه نظرية النسبية أن يكون الضوء مثل دفق من الجسيمات الأولية ، أو كمية من الطاقة المعينة في نقاط من الفضاء . وقد سميت هذه الكلمات فيما بعد بالفوتونات وتم اثبات وجود مثل هذه الجسيمات في عام 1923 م على يد كومبتون .
 
في ثلاثينات القرن الماضي كانت الجسيمات المعروفة فقط ستة جسيمات هي الإلكترونات ، البروتونات ، النيترونات ، الفوتونات ، البوزيترونات ، النيوترينو .
كان التصور أن هذه الجسيمات هي المكونات الأساسية لكل المواد الموجودة في الكون ، لكن السؤال الذي شغل بال العلماء طويلاً في تلك الفترة هو : ماهي طبيعة القوة التي تربط بين البروتونات موجبة الشحنة داخل النواة ،ولا تجعلها تتنافر أبدًا و إنما تبقيها متوحدة وقريبة من بعضها.
كان الجميع مقدرًا في تلك اللحظات أن هذه القوة هي أقوى من أي شيء معروف في الطبيعة .
كانت أول نظرية وضعت كتفسير لهذه القوة بداية لفيزياء الجسيمات الأولية كما هي عليه اليوم .
كان ذلك سنة 1935 م عندما تنبأ العالم الياباني ( يوكاوا ) Hidoki Yukawa وجود جسيم جديد يتوسط بطريقة ما القوة النووية . والذي حصل على جائزة نوبل عام 1935 م .
القوى الأساسية في الطبيعة أربعة كما نعلم جميعًا وهي (تصاعديًا) حسب القوة :

1- قوة الجاذبية .
2- القوة الكهرومغناطيسية .
3- القوة النووية الضعيفة .
4- القوة النووية القوية .

كانت الفكرة في ابتداع النواقل هي مايلي : مالذي يجعل جسمًا ما يتأثر ويتفاعل مع غيره ؟ على الرغم من عدم تلامسها !!
الأرض تتأثر بجاذبية الشمس ... كيف وكلاهما على مسافة هائلة من بعضها البعض ؟
لاعبي كرة اليد يتفاعلون سويًا بالرغم من عدم تشابكهما بالأيدي كيف ؟! هناك الكرة . التي تنتقل من أيدي لاعبي الفريق الأول إلى الفريق الثاني وهكذا دواليك وتنتقل حاملة قوة من فريق الى اخر. .
كانت هذه اللبنة الأولى للتفكير في نواقل القوة ، ولأن موضوعنا تركيزًا على النوع الثاني فسنعدد النواقل تعددًا فحسب :
نواقل قوة الجاذبية : الجرافيتونات .
نواقل القوة الكهرومغناطيسية : الفوتونات .
نواقل القوة الضعيفة : البوزونات المتجهة ، أو البوزونات الضعيفة ..
نواقل القوة القوية : الجليونات .
لنعد الآن إلى قصتنا ...

لم تكن الجليونات معروفة عندها بطبيعة الحال ، لذا كانت فكرة يوكاوا أن القوة التي تربط النيوكليونات ( وهي تسمية عامة تطلق على البروتونات والنيترونات ) بسببها تبادل جسيم بينها ، وتنبأ أن كتلة هذا الجسيم هي 200 كتلة الإلكترون ، ولأن هذا الجسيم كتلته أكبر من كتلة الإلكترون وأقل من كتلة البروتونفإنه أطلق عليه اسم ميزون ( وتعني باللاتينية meson المتوسط ) .
بدأت التجارب المعملية في البحث عند ميزون يوكاوا ، ومن غير خوض في التفاصيل المعملية ، توصل كارل أندرس في دراسته للأشعة الكونية للكشف عن جسيم كتلته تعادل 207 كتلة الإلكترون ، وظن الجميع أن هذا هو ميزون يوكاوا الخاص بالتفاعلات القوية لكن هذا الجسيم أظهر تفاعلاً ضعيفًا مع مكونات المادة ، الأمر الذي يستحيل أن يكون معه هو جسيم التفاعلات القوية .
وهكذا بدأ العلماء في دراسة مستضيفة لكل الجسيمات التي يتم الكشف عنها من دراسة الأشعة الكونية ، أو من تحلل بعض العناصر ومن تفاعل جسيم مع جسيمات أخرى .
وانطلقت الشرارة ، وزاد عدد الجسيمات المكتشفة إلى حد هائل استدعى تقسيمها وترتيبها واعطائها مسميات تليق بها ، وأطلق على هذا الحقل الجديد المستحدث في الفيزياء : فيزياء الجسيمات ، أو فيزياء الطاقة العالية وذلك لأن هذه الجسيمات لا تنتج في الظروف العادية الطبيعية وإنما يتم انتاجها تحت طاقات مرتفعة للغاية .
ما هذه الأقسام ؟ ولماذا سميت هكذا وما هي أنواعها وكيف نميز بين أحدها والآخر ؟

بعد أن انتهينا من قصة الجسيمات كيف بدأت ؟ ولماذا درست ؟ سنبدأ الآن في الحديث عن أقسامها وأنواعها وأسمائها 


تصنيف الجسيمات الأولية
Classification of Particles

* تصنيف الجسيمات على أساس الكتلة إلى ثلاثة أصناف رئيسية :
1- اللبتونات Leptons وهي الجسيمات الخفيفة مثل الإلكترونات .
- الميزونات mesons وهي الجسيمات المتوسطة الكتلة مثل البايونات .
3- الباريونات baryons وهي الجسيمات الثقيلة مثل النيوكلونات والجسيمات الأثقل .
لكن هذا التصنيف ما لبث وأن استبدل بآخر أكثر فائدة صنفت فيه الجسيمات بدلالة تفاعلاتها . على سبيل المثال الهادرونات hadrons
( التي تتضمن الميزونات والباريونات ) لها تفاعلات قوية بينما لا تتسم اللبتونات بتلك الصفة .


إذن يمكن تصنيف الجسيمات الأولية ( الأساسية ) التي تم اكتشافها إلى ثلاث مجموعات رئيسية ، تتعين كل منها طبقًا للطريقة التي تتفاعل بها هذه الجسيمات .
1- الفوتونات .
2- الليبتونات وتشمل ( النيوترينو ، الإلكترون ، والمايون ) .
3- الهادرونات وتشمل الميزونات ( البايون ، الكايون ، الباريونات ، نيوترون ، بروتون ، جسيم سيجما ، جسيم لمبدا ، جسيم اكساي ) .
الفوتونات :

الفوتونات كمات من الطاقة وتعتبر الحامل للمجامل الكهرومعناطيسي .
وتتميز بأن لها كمية تحرك لفية ذاتية تساوي (1h) أي أنها تتبع احصاء بور – آينشتاين ، الذي يختص بالبوزونات ذات كمية التحرك اللفية الذاتية مضاعفات العدد الصحيح بوحدات (1h).
الليبتونات :
تتميز بأن كمية تحرك لفية ذاتية مضاعفات فردية لأنصاف الأعداد الصحيحة أي 1/2h , 3/2h , 5/2h ….))
و لذلك فإنها تتبع احصاء فيرمي ديراك ولأنها أخف من البروتون فهي تدعى بالفيرميونات الخفيفة ومن الجدير بالذكر أن الليبتونات لا يشتمل اضمحلالها على بروتون أو نيترون .


الهادرونات :
تشتمل على الباريونات والميزونات .

الباريونات :
أي الفيرميونات الثقيلة وتحوي جميع الفيرميونات ذات الكتل الأثقل من أو المساوية لكتلة البروتون .
وتتميز الباريونات بوجود بروتون أو نيترون كناتج أخير لاضمحلالها .
ولا تنتج الباريونات ولا تضمحل في الطاقات العالية إلا أزواجًا من الجسيمات وضديداتها فمثلاً لو حدث تصادم بين بروتونين لهما طاقة عالية كافية فإن زوجاً أو أكثر من البروتون وضديده يمكن أن تنتج بالإضافة إلى عدد غير محدود من البايونات والكايونات .

الميزونات :
الميزونات ( البايونات والكايونات ) تعتبر القسم الآخر من البوزونات ، أما البايونات فتعتبر الحامل للمجال النووي ( أي المجال الميزوني ) وهو المسؤول عن التفاعل القوي وتعتبر الكايونات من الميزونات الثقيلة ، وتعرف الميزونات بأنها النظم التي تنتهي سلسلة اضمحلالها بليبتونات أو فوتونات .

كما تصنف الجسيمات الأولية طبقاً للاحصاء الذي تتبعه إلى :
1- فيرميونات .
2- بوزونات .

فالجسيمات التي لها كمية تحرك لفية ذاتية مضاعفات للعدد الصحيح أي
( 0h , 1h , 2h ….. ) حيث h ثابت بلانك مقسومًا على × 2 .
وتتبع إحصاء بوز – آينشتاين ولذا فإنها تدعى بالبوزونات .
أما الجسيمات التي لها كمية تحرك لفية ذاتية مضاعفة فردية لأنصاف الأعداد الصحيحة أي ( 1/2h , 3/2h , 5/2h … ) فإنها تتبع احصاء فيرمي ديراك ولذلك فإنها تدعى بالفيرميونات
    
 
يقول توماس اديسون عن امه:
« لقد اكتشفت مبكراً في حياتي ان الام هي اطيب كائن على الإطلاق, لقد دافعت امي عني بقوه عندما وصفني استاذي بالفاسد, وفي تلك اللحظه عزمت ان اكون جديرا بثقتها, كانت شديدة الاخلاص واثقة بي كل الثقه, ولولا ايمانها بي لما أصبحت مخترعا ابدا.»

وقال توماس اديسون عن الصمم الذي كان مصاب به:
«إن هذا الصمم الجزئي لهو نعمه من بعض النواحي, لأن الضوضاء الخارجيه لاتستطيع ان تشوش افكاري.»

تعرفوا على فيجانيلا .. القرية التي بَنَت شمسها بنفسها !!


فيجانيلا أو Viganella هي قرية صغيرة تقع في قاع وادٍ صغير محاط بالجبال من جميع الجوانب في إيطاليا، لذا لدى هذه القرية مشكلة استثنائية هي غياب الشمس عنها تماماً كل سنة من منتصف نوفمبر وحتى بداية فبراير، فأقيمت فيها على مدار قرون احتفالات عند قدوم آشعة الشمس بعد تلك الفترة، لكن هذا التقليد وهذه الاحتفالات توقفت من  ديسمبر 2009 حين تم حل هذه المشكلة .. كيف؟!

الفضل يعود لإبداع وذكاء جياكومو بونزاني وهو مهندس ومصمم ألواح شمسية عملاقة بإيطاليا، حيث فكّر في طريقة يستطيع بها إدخال ضوء الشمس للقرية فقرر عمل مرآة عملاقة على منحدرات هذه القرية بحيث تعكس أشعة الشمس تجاه مربع القرية، فمن قرية لا ترى الشمس شهرين في السنة (منذ فجر التاريخ) إلى قرية ممتلئة بضوء ودفء الشمس طيلة العام!


 المرآة بحجم 40 متر مربع وعرض 8 متر في 5 أمتار ارتفاع وتقع على ارتفاع 870 متراً أعلى تلك القرية. الأجمل أن هذه المرآة الضخمة يتحكم بها برنامج كمبيوتر يتعقّب ضوء الشمس بحيث تميل أجزاء المرآة تجاه القرية مباشرة، إلى أن أصبحت هذه القرية مزاراً سياحياً الآن أكثر من كونها قرية عادية.

 طبقاً للمهندس بونزاني فهو أول من أتى بهذه الفكرة بالرغم من عدم تصديق الناس لها واستهزائهم بها لكنه لطالما آمن بقوانين الفيزياء ( كما قال )، وساعده في ذلك إيميليو بارلوكو وهو مهندس قام بإخراج التصميم النهائي للمرآة قائلاً أن تصميم المرآة لم يكن بتلك السهولة التي يتخيلها البعض، فكان واجباً علينا إيجاد المواد اللازمة فهي ليست كالمرايا العادية وكان يجب علينا إيجاد المصدر المالي بتكلفة تعدّت المائة ألف يورو ..



فقط دعونا نتمنى ألا يحوّلها أحدهم بطريقة ما لآلة حرق شمسية ويقلي القرية بأكملها .. !!

وأتتركم ختاماً مع هذا الفيديو:












 Laws of Nature
In our ordinary experience, we observe regularities: The daily sunrise, the sequence of seasons during the year, and the regular increase and decrease of the visible size of the moon. Do these observations indicate strict laws that hold rigorously and without any exception? David Hume argued that induction is not sufficient for concluding that there are strict laws behind the observed regularities. Hence, we cannot be sure that there are laws at all and our first question reads: Are there laws of nature? According to Hume, Kant, and many other philosophers this question cannot be answered by induction alone. Moreover, we are also confronted with the inverse question. If there are regularities that are based on strict laws that hold necessarily, may these laws be considered as genuine laws of nature? We discuss this problem with respect to the laws of logic and with respect to some laws of mathematics. Our first, still preliminary answer is that these formal and necessary laws should not be considered as laws of nature. But then we must find an answer to the main question of these first investigations: What is a law of nature?

 Tesla Coil 

Waves in a Large Free Sphere of Water